摘要

我国北方地区风电机组叶片结冰问题,对机组正常安全运行会产生严重影响。为对风电机组叶片结冰状态进行有效预测,基于风场大数据,提出一种使用深度学习算法进行优化的深度全连接神经网络的风电机组叶片结冰预测算法。将处理后的数据集对深度全连接神经网络模型进行训练、测试、评价,最后将所得评价结果并与最近邻法(KNN)、支持向量机(SVM)、未使用深度学习优化算法的BP神经网络的预测结果进行对比。结果表明,所提出的基于深度全连接网络的风电机组叶片结冰预测算法,求取精度较高,计算量少,可以对风电机组叶片结冰预测问题进行快速有效判断。