摘要
针对肝脏超声影像受噪声和边缘模糊等因素的影响,肉眼无法客观准确辨别病灶区域等问题,提出了无监督学习的多任务网络(MultiTasking-network,MT-net)算法,该算法分为MT-net(Dn)和MT-net(Cl)两部分。其中,MT-net(Dn)算法通过使用交替优化和可重复利用信息的skip-connection,分别对小样本集L′S(dataset:1937)和大样本集L′B(dataset:3424)进行去噪实验,去噪后的图像最大限度地保留了肝脏图像的纹理特征,有利于提高图像的识别率,最终得到的识别率分别为97.12%和86.84%,优于AlexNet等传统算法;MT-net(Cl)算法通过对LS和LB样本进行图像纹理特征识别,达到了92.81%和86.62%的识别率。实验结果表明,多任务网络算法中的MT-net(Dn)算法更优于MT-net(Cl)算法。
- 单位