摘要
长短时记忆神经网络(LSTM)具有极强的复杂多变量时间序列非线性关系拟合和历史数据认知能力,适用于对径流这类复杂时间序列过程进行模拟和预报。基于LSTM,采用灰色关联分析法(GRA),选取合适的预报因子建立G-LSTM预报模型,探究了该模型在短期径流预报中的应用和效果。将该方法应用于长江上游寸滩断面-三峡入库断面的径流模拟,并与传统的新安江模型、BP神经网络、LSTM模型的模拟结果进行比较。结果表明:与传统学习的近似映射相比,G-LSTM模型具有优秀的非线性函数学习能力,率定期与检验期的确定性系数均在0.9以上,明显优于其他两种模型的模拟结果。G-LSTM模型显著提高了短期径流预报精度,是一种有效的径流预测方法。
-
单位华中科技大学; 长江勘测规划设计研究有限责任公司