摘要
目的维吾尔文属于黏着性语言,其组成方式是在词干上添加词缀来实现不同的语义,在添加词缀的过程中词干的尾部会发生一定的形态变化,而且词干添加词缀的时候也可能会发生弱化、脱落、增音等音变现象导致进一步的形态变化,所以利用目前的图像文字检索(word spotting)技术只能检索到某一具体的维吾尔文词汇,却不能以某一词干为检索词,检索出其对应的带后缀的词语。为此,提出了基于映射关系的带后缀印刷体维吾尔文词语检索技术。方法首先利用局部特征对维吾尔文词图像进行特征提取,其次将获得的特征用快速最近邻搜索(fast library for approximate nearest neighbors,FLANN)双向匹配来获得特征匹配集,最后将特征匹配集进行单应性变换和透视变换到待检索维吾尔文词图像上,把特征匹配集转化为空间关系,经过映射匹配对特征匹配集的空间关系进行后缀词检索,从而实现印刷体维吾尔文图像带后缀词检索的需求。结果实验数据选取190幅维吾尔文印刷体文本图像中的17 648幅切割词图像,并对其中30幅词图像的167幅后缀词图像进行后缀检索,采用不同的局部特征算法进行后缀检索对比,结果表明,尺度不变特征变换(scale-invariant feature transform,SIFT)算法的后缀检索效果优于SURF(speeded up robust features)算法,精确率和召回率分别达到了94.23%和88.02%,在印刷体文档图像中,可以高效地检索到词干组成的后缀词,能够满足用户的不同检索需求,具有普适性。在弱化、脱落、增音和多种音变同时出现以及词干尾部发生变化的不同情况下进行后缀检索对比实验,实验结果表明在弱化和词干尾部变化而导致的形态变化中,检索效率最佳。结论本文提出的基于映射关系进行后缀词图像检索的方法,是第一次对维吾尔文带后缀词检索方式的一种实现,利用匹配集之间的空间关系,对维吾尔文带后缀词图像实现了高效检索的目的。
- 单位