基于CEEMD-ISSA-LSTM的空气质量预测

作者:朱菊香; 谷卫; 罗丹悦; 潘斐; 张赵良
来源:国外电子测量技术, 2022, 41(11): 120-129.
DOI:10.19652/j.cnki.femt.2204219

摘要

针对传统空气质量(AQI)预测模型精度较低的问题,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化长短期记忆网络(LSTM)的预测模型。首先,针对具有大量噪声的AQI数据直接进行预测误差较大的问题,利用CEEMD算法将原始AQI数据进行模态分解,以降低噪声对预测结果的影响。其次,针对麻雀搜索算法(SSA)易陷入局部最优、收敛速度慢的问题,利用正弦混沌、动态自适应惯性权重、高斯变异和反向学习策略改进麻雀算法,降低了SSA陷入局部最优解的概率,提高了麻雀算法的收敛速度和寻优能力。最后,利用ISSA对LSTM模型的参数进行寻优,构建ISSA-LSTM模型进行预测,得到最终的AQI预测结果。实验结果表明,与其他传统预测模型相比,基于CEEMD-ISSA-LSTM模型对AQI的预测具有更高的精度,其预测的均方根误差为1.24μg/m3,平均绝对误差为0.98μg/m3,拟合度为98.5%。