摘要

为及时准确地评价风电机组齿轮箱的健康程度,提出一种基于KECA-GRNN的性能监测与评估方法。该方法分为状态监测、故障预测、健康评估3个阶段。在状态监测阶段,将KECA算法应用到风电机组的性能监测中,并采用SPE统计量监测齿轮箱状态。在故障预测阶段,将KECA算法提取的主元数据作为GRNN模型输入,建立KECA-GRNN预测模型,并采用预测残差的变化趋势定义报警限,实现故障的早期预警。在健康评估阶段,将多变量预测残差进行融合,增强评估的可靠性。最后,将该方法应用于某风场一台1.5 WM风电机组在故障前近2个月的部分SCADA数据中,结果表明可提前2周获知齿轮箱发生异常,实现了对风电机组齿轮箱健康状态的准确评估。

全文