为了实现退役动力锂电池荷电状态(State of Charge,SOC)的预测,针对退役锂离子电池特殊的非线性关系,提出自适应法和列文伯格算法(Levenberg-Marquardt,LM)相结合优化BP神经网络估算退役锂电池SOC的VLLM动态模型,并验证了随机工况下退役锂电池SOC预测的可靠性。实验结果表明,该模型用优化神经网络法估算SOC的误差能控制在1%以内,随机工况误差在5%以内,提高了退役锂电池SOC的预测精度,为退役锂电池的梯次利用奠定了基础。