摘要
风电机组主轴承作为传动系统的重要组成部件,其异常辨识精度受风速波动的影响较大。针对该问题,提出了一种基于BPNN-NCT的风电机组主轴承异常辨识方法。首先,利用相关系数法确定了与主轴承状态相关的参数作为模型的输入,并基于反向传播神经网络(BPNN)建立了以主轴承温度为状态参数的状态参数预测模型。然后,基于非中心t(NCT)分布刻画了不同风速波动区间下状态参数预测残差的分布特性,并在此基础上提出了计及风速波动影响的风电机组主轴承异常状态量化指标。最后,以某风电场的2 MW直驱风力发电机组为例,验证了所提方法的有效性和准确性。
- 单位