摘要

对于复杂失效域和小失效概率耦合的可靠性分析问题,本文提出了一种交叉熵重要抽样(CE-IS)方法结合自适应Kriging(AK)代理模型的求解方法(CE-IS-AK)。所提方法基于交叉熵原理,用混合高斯模型逐步逼近最优重要抽样密度函数,并采用AK模型协助逼近过程中混合高斯模型的参数的更新,从而提高了CE-IS方法的计算效率。另外,本文还改进了CE-IS方法的收敛准则,避免了方法的冗余迭代,扩大了方法的适用范围。由于在CE-IS方法中引入了AK模型,因此,本文方法所构建的重要抽样函数在保证精度的基础上提高了效率。相较于AK-MCS方法,本文方法中引入了重要抽样的思想,因此在Kriging训练点数目基本相同的情况下,大幅缩减小失效概率计算时样本池规模,并且由于利用了混合高斯模型,因而对多失效域具有较好的适用性。算例分析也证明了本文所提方法的优越性。