摘要

随着大数据、互联网等新兴科技的飞速发展,人们生活逐步向数字化、信息化迈进,高维图像数据、高维文本数据等各类复杂数据不断涌现。高维数据具有包含信息量大、易出现信息冗余的特征,给文本分类带来阻碍。为此,提出一种基于长短期记忆神经网络(LSTM)的高维数据多标签分类方法。该方法从数据降维的角度出发,利用最大依赖性降维方法(MDDM),将高维数据降为低维数据,提高有效信息占比、减少信息冗余。将降维后的低维数据作为长短期记忆神经网络的输入,利用softmax函数对神经网络的输出进行多标签分类。在食品稽查数据上进行的安全预警实验验证了该方法的可行性,最终分类准确率达到86.5%,比未降维的数据分类准确率提高36.5%。实验还对比了不同神经网络模型在该数据集上的分类性能,结果表明使用LSTM神经网络进行分类结果较好。良好的分类结果表明该方法在食品稽查数据集上特征提取的准确性,食品安全稽查部门可对具有该违法特征的食品生产企业进行监督管理,从而避免食品安全问题的发生,以达到食品安全预警的目的。