本发明公开了一种基于多任务多示例的远程监督关系抽取方法,其特点是采用多任务和多示例的学习架构,以及Word2vec词向量预训练和多示例的句子级别注意力机制方法进行远程监督关系抽取,具体包括:数据预处理、输入表征、抽象语义表示、实体类型表征和多任务多示例关系抽取等步骤。本发明与现有技术相比具有方法简便,有效解决了噪声、训练不充分和数据的类不均衡问题,有效降低噪声对分类的影响,提高真实句子对分类的贡献,对缓解噪声和NA对分类的影响,具有一定的实用价值。