针对方向性数据提出了一种鲁棒的基于方向相似性度量的聚类方法DSCM·DSCM首先基于方向性度量构造目标函数,然后通过不动点迭代法对目标函数优化,获得各个样本的最终稳定状态,最后基于样本的最终状态集利用层次聚类技术实现聚类·DSCM的优势在于对方向性数据聚类时不依赖于具体的初始化参数,且能自组织地求解最优聚类划分因而有很好的鲁棒性·通过实验证实了DSCM的有效性以及对已有的两个传统方向性聚类算法的优越性·