摘要

针对金属缺陷识别领域中传统深度学习方法存在参数量多、计算量大的问题,提出了一种浅层卷积神经网络融合Transformer模型的金属缺陷识别方法。利用浅层卷积神经网络学习图像局部信息与位置信息,通过Transformer学习图像全局信息,同时引入通道注意力模块SE关注重要特征通道,实现缺陷图像识别。通过引入公开缺陷数据集验证该方法的有效性,同时利用自建缺陷超声数据集验证所提方法的通用性。实验结果表明,在中小规模数据集上,该方法通用性较强,能够对金属缺陷图像进行有效识别。

  • 单位
    石油大学机电工程学院