基于改进孪生支持向量机的热电厂脱硫系统pH值预测

作者:程换新; 黄震; 骆晓玲
来源:青岛科技大学学报(自然科学版), 2019, 40(05): 101-106.
DOI:10.16351/j.1672-6987.2019.05.015

摘要

在热电厂脱硫过程中,pH值直接影响脱硫的效率,若pH测量仪器受到环境的影响被破坏,会给生产造成巨大的损失。为了降低这种损失,采用改进的孪生支持向量机回归模型对pH值进行预测,首先将粒子群算法的权值和学习因子进行改进,然后用改进之后的粒子群算法对孪生支持向量机回归模型的惩罚参数和核函数的参数等进行寻优,再将最优的参数代入孪生支持向量机预测模型中,最后用MATLAB工具箱对pH值历史数据进行仿真,并与未改进的孪生支持向量机和BP神经网络预测技术进行比较。结果表明:该方法对脱硫系统中pH值的预测精度高,平均相对误差比未改进的孪生支持向量机和BP神经网络的预测结果小,能够显著改善脱硫装置的效率。

全文