基于深度学习理论的隧道变形监测技术研究

作者:何军; 林广东; 申小军; 徐卫奖
来源:山西建筑, 2021, 47(12): 117-120.
DOI:10.13719/j.cnki.1009-6825.2021.12.044

摘要

以河南省郑西高速栾双段中坪左线隧道实体工程的建设为背景,通过采集隧道建设过程中的沉降、收敛等数据,并结合深度学习理论LSTM神经网络模型进行深度学习,探究了该隧道在施工过程中的变形规律,通过结合现场实测数据进行对比分析验证,得出复杂地质条件下隧道的沉降速度与收敛速度成正相关,并随着时间的推移隧道沉降逐渐减小,且呈现先快后慢的趋势;通过深度学习理论LSTM神经网络模型能够有效的学习隧道采集的样本数据,并能很好的预测复杂地质条件下隧道的变形规律,给隧道的安全施工、运营提供良好的判别依据。

全文