摘要

在基于深度学习的图像配准中,图像中具有复杂解剖结构的形变区域是影响网络配准精度的重要因素,然而现有方法很难关注到图像的复杂解剖区域。同时,卷积神经网络的感受野受其卷积核大小的限制,难以学习空间位置距离较远的体素之间的关系,使其难以处理较大区域形变问题。针对以上两个问题,本文提出了一种基于视觉变换器(Transformer)的级联多阶层配准网络模型,并配备了一种基于均方误差的困难形变感知机。困难形变感知机使用滑动窗口和浮动窗口技术在配准图像中进行检索,得到每个体素的困难形变系数,识别出配准效果最差的区域。本研究中,级联多阶层配准网络模型采用困难形变感知机进行阶层连接,在基础配准网络中凭借自注意力机制提取全局特征,对不同尺度的配准结果进行优化。实验结果证明,本文提出的方法可以对复杂形变区域进行渐进配准,从而优化脑部医学影像的配准结果,对医生的临床诊断工作有良好的辅助作用。