摘要
为了解决基于深度学习的开展矿物高光谱丰度反演研究中标签数据不足的问题,提出一种基于添加填充系数的Hapke混合模型的小样本矿物高光谱数据增强方法,用于生成大量带标签的数据集。在实验室内选择5种常见矿物按照质量比例对矿物粉末进行多元混合,并对混合矿物开展光谱量测。基于线性混合模型、Hapke混合模型、填充系数分别为0.1,0.2和0.3的Hapke混合模型共5种模型,按照对应的质量比例生成模拟的混合矿物光谱,与实验室实测光谱进行比较。最后,基于Monte Carlo法随机生成多元“和为一”的丰度矩阵,利用5种混合模型开展数据增强,分别生成40 000条模拟光谱作为堆栈自编码网络的训练集,反演矿物高光谱数据的丰度信息。研究结果表明:Hapke模型以及添加填充系数后的光谱模拟精度均优于线性混合模型的模拟精度,当Hapke模型的填充系数为0.1和0.2时,光谱角距离误差均值分别为0.053 5和0.053 7,模拟的矿物光谱更接近实测光谱,且优于未添加填充系数时的光谱角距离误差0.074 8。利用填充系数为0.1和0.2的Hapke模型生成的模拟数据作为深度学习训练集,矿物高光谱丰度反演的均方根误差(RMSE)为0.124 8,优于其他4种模型的反演结果。基于添加填充系数后的Hapke混合模型生成的模拟数据更接近真实光谱,可为深度学习的小样本矿物丰度反演研究提供数据支撑。
-
单位核工业北京地质研究院