摘要
针对矿井通风网络分支风量优化问题,以矿井通风网络的总功率最小为目标,结合矿井模型中风量平衡方程、风压平衡方程、分支阻力方程以及风机特性曲线方程等约束条件,提出一种多种群自适应粒子群优化算法(MA-PSO)对矿井通风网络实现寻优。首先对随机生成的种群进行初始化预处理,将适应值从高到低排序,然后以预处理后的局部最优解为圆心,以局部最优解与其他粒子的欧式距离的平均值为半径,将种群划分成五个子种群,接着在速度更新公式中引入拓扑项和种群交流因子,以种群为单位在求解空间中搜索,保障种群的多样性,从而加快种群进化和算法收敛速度;最后采用自适应权重和冗余粒子初始化淘汰策略,提高算法搜索能力和学习能力。仿真结果表明:该算法具有较好的多模态寻优率、更快的收敛速度和更高的收敛精度,优化后通风系统消耗的总功率较之前相比下降26. 78%,节能效果显著。
- 单位