摘要
提出一种融合卡方统计和TF-IWF算法的短文本分类方法,通过卡方统计对训练数据集提取特征词,由TF-IWF算法赋予特征词权重,使用SVM分类器进行分类。实验结果表明:融合卡方统计和TF-IWF方法在文本分类准确率上提升3.1%,召回率提升5.2%,F1值提升3.7%。该方法扩大了特征词权重值的范围,使文本集的权值方差增大,一定程度上解决了短文本内容稀疏性的问题,从而提高短文本分类的性能。
-
单位重庆邮电大学; 经济管理学院