摘要
建设数据高效互联的轨道交通车间已成为当前轨道交通装备行业转型发展的必然趋势。越来越多样化的移动运输机器人设备成为智能工厂数字化转型过程中的关键。准确预测机器人的电池电量可以指导控制中心提前采取科学合理的指令,确保物流运输链高效稳定运行。在本研究中,我们提出了一种基于状态-动作-奖励-状态-动作(Sarsa)强化学习算法的多学习器混合集成方法。首先,采用最大重叠离散小波变换(MODWT)对所测量的机器人原始电源电压数据进行预处理,可以显著降低时间序列数据的非平稳性和波动性。其次,利用门控循环单元(GRU)、深度置信网络(DBN)和长短期记忆(LSTM)对分解后得到的子序列进行预测建模。最后,使用Sarsa强化学习集成策略对上述三个基础预测器进行加权组合。所提出的Sarsa混合集成模型的性能在三个真实移动机器人功率数据集上得到验证。实验结果表明,运输机器人电池动力混合预测模型在鲁棒性、准确性和适应性方面具有竞争力。
- 单位