摘要
以深圳市坝光银叶园和大鹏半岛自然保护区19种湿地森林树种叶片可见光近红外光谱与全氮(Total Nitrogen, TN)、全磷(Total Phosphorus, TP)、全钾(Total Potassium, TK)含量关系为基础,分析了11种光谱预处理方式、3种光谱数据降维方式和2种建模方法对模型精度的影响。结果表明,标准正态变换(Standard Normal Variate, SNV)结合一阶导数(first derivative, 1st)预处理方式下模型精度最高;主成分分析(Principal Component Analysis, PCA)降维处理对模型的降维效果最好;支持向量回归(Support Vector Regression, SVR)的建模效果精度最高。对于TN、TP、TK最佳模型的预测确定系数均在0.80以上,模型RPD值也在2.0以上,SVR模型可以用于树种叶片TN、TP、TK的快速检测。
- 单位