摘要
为了应对高光谱图像同质区域面积分布不均的问题,同时更充分地挖掘空间和光谱信息之间的内在联系,提出了一种基于多尺度空谱鉴别特征的高光谱图像分类方法。该算法首先对图像进行不同尺度的滤波操作,接着分别从得到的多幅图像中提取鉴别的空谱特征,并使用支持向量机(SVM)进行分类。最后,该算法采取"决策级融合"的策略,来综合不同滤波尺度图像的分类结果。在Indian Pines,Kennedy Space Center和University of Pavia数据集上的实验表明,该算法能够提取较为有效的空间信息,当随机选取10%的像素作为训练样本时,该算法的总体分类准确率均能达到96%以上,其分类精度和Kappa系数均优于其他分类算法。
- 单位