摘要
现有的基于卷积神经网络的森林火灾烟雾检测算法,存在烟雾特征提取结构过于复杂、烟雾多尺度特征融合方法过于繁琐、计算复杂度大以及应用场景单一等问题,而且其部署所需硬件配置高且难以适应多变的森林环境,这阻碍了其在森林防火领域的实际应用。为此,设计了一种基于轻量化卷积神经网络的森林火灾烟雾检测算法。首先,为提高烟雾特征提取的能力和速度,基于重参数化技术与跨阶段局部网络,提出一种轻量化烟雾特征提取结构。其次,基于简化的特征金字塔网络和路径聚合网络,设计出轻量化烟雾多尺度特征融合方法,实现不同尺度烟雾特征的高效融合。然后,提出一种烟雾检测后处理方法并增加类似烟雾图像进行算法模型训练,避免不同应用场景中非火灾烟雾图像和类似烟雾图像对检测算法的影响。最后,采用本文构建的烟雾图像数据集对算法进行验证。实验结果表明,本文算法相对于其它算法具有较高的检测精度和速度,F1分数达82.6%,AP值达54.5%,最高检测速度达869张/秒。
- 单位