利用爬虫技术从中国种业大数据平台获取小麦特征信息数据集,采用手工结合计算机程序的方式处理数据.对处理后的数据使用传统机器学习中的支持向量机、朴素贝叶斯和深度学习中的BP神经网络方法,分别构建小麦抗寒性模型.实验结果表明,与传统机器学习的模型相比,BP神经网络在小麦抗寒性分类效果预测上表现的效果优、预测准确率高.