摘要

针对灰狼算法易于陷入局部最优问题,提出了一种融合自适应差分进化机制的多目标灰狼优化算法。首先,将外部种群Archive按目标函数值的距离进行分组以避免存储相似个体。其次,设置头狼选择机制,在外部种群中选择头狼。最后,在更新过程中引入差分进化,择优选择下一代灰狼,同时差分进化参数可根据候选解加权目标函数值动态地自适应调整,平衡算法的局部开发与全局探测性能。基于8个多目标测试函数的验证结果表明,提出的多目标灰狼优化算法的收敛性与分布性优于其他3种算法。