摘要
为实现睡眠分期,为穿戴式生理参数监测技术在慢病监测领域的应用提供技术支撑,发展基于心率变异性和支持向量机模型的睡眠分期算法。从心率时间间期序列中提取时域、频域和非线性等86个特征,将多导睡眠图仪的三分类结果(醒、快速眼动期、非快速眼动期)作为"金标准",采用支持向量机作为多分类器模型;为保证训练集数据质量,使用开放睡眠数据库SHHS中由专家确认挑选的67例PSG样本作为训练集,实现特征筛选和模型参数训练。为验证模型的泛化性能,从SHHS数据库中进一步随机提取939例PSG样本,对模型性能进行测试。睡眠分期模型在训练集上的五折交叉验证的准确率为84.00%±1.33%,卡帕系数为0.70±0.03;在939例测试集上的准确率为76.10%±10.80%,卡帕系数为0.57±0.15。剔除RR间期异常(110例)和明显睡眠结构异常(29例)的样本后,测试集(800例)的准确率为82.00%±5.60%,卡帕系数为0.67±0.14。所提出的基于心率变异性分析的睡眠分期算法具有较高的准确性,大样本人群测试结果表明,该模型具有较好的普适性。
-
单位北京航空航天大学; 解放军总医院