摘要

基于一种改进的支持向量机(ν-SVR)和改进的遗传算法(GA),提出一种初始地应力场位移反分析方法。该方法通过正交设计方法安排较少次数的正分析方案,用ν-SVR对正分析中测点位移值与参数构成的样本集进行学习,建立参数取值与观测点测值的非线性隐式方程;采用确定性或随机反分析的思路确定反分析的优化目标函数,并利用GA搜索最优参数取值。采用ν-SVR方法建立的参数取值与位移量测点测值的非线性隐式方程,能够以很高的精度拟合和预测不同参数取值时的观测点测值,因此,可以用该隐式方程代替正分析,减少计算量;采用改进的GA方法能够准确搜索到最优参数;搜索到的最优参数值与理论值相当吻合。算例表明,基于ν-SVR...

全文