摘要

在互联网金融背景下,智能算法的应用能够为经济领域提供新的思路和方向,有效推动中国互联网金融向"互联网+金融+智能"模式的转变。P2P网络借贷是通过P2P公司搭建的第三方互联网平台进行"个人对个人"的直接信贷。以人人贷平台为研究对象,运用特征工程技术,将CatBoost算法应用于构建P2P违约预测模型,并对违约影响因素进行综合分析。结果表明,CatBoost算法的预测准确率达96%,对实际结果的拟合效果较好,并能够对模型出错所导致的损失成本进行有效控制。此外,综合分析违约影响因素发现,借款人的信用情况对借款人违约行为影响较大,其中还清贷款次数、逾期次数与成功借款次数应作为借款人信用评估的重要参考指标。结合本文的研究成果与中国P2P行业发展状况,本文建议P2P平台积极促进数据分析与测算分析技术的革新与应用,政府及相关部门形成政策法规的同步发展,促成从平台内部到外部环境的合力发展态势。