抗推理攻击的分布式多任务学习隐私保护方法及系统

作者:马鑫迪; 马建峰; 沈玉龙; 姜奇; 谢康; 李腾; 卢笛; 习宁; 冯鹏斌
来源:2020-09-16, 中国, ZL202010974661.X.

摘要

抗推理攻击的分布式多任务学习隐私保护方法及系统,通过各任务节点基于本地数据进行模型训练,并通过共享知识的方式实现联合模型训练;本发明提出基于同态密码学的隐私保护模型训练机制,使得任务节点在保证训练数据隐私的前提下,实现多任务学习模型训练,并使得模型训练效率独立于样本数据量,提高了机器学习模型训练效率;设计了基于差分隐私的模型发布方法,可以抵抗模型用户在访问机器学习模型时发起的身份推理攻击。系统包括密钥生成中心、中央服务器、任务节点和模型用户。本发明能够保证模型训练过程中和模型发布后任务节点的数据隐私,促进多任务机器学习的大规模应用。