摘要
针对乘客在搭乘扶梯时的危险行为难以被实时准确检测的问题,提出了一种基于视频监控的手扶电梯乘客异常行为识别算法。首先,使用YOLOv3对图像中乘客的位置进行检测;接着,使用MobileNetv2作为基网络,结合反卷积层对检测出来的乘客进行人体骨架提取;然后,使用骨架距离作为跟踪依据,采用匈牙利匹配算法对相邻帧间的人体骨架进行匹配,实现视频中乘客的ID号分配;最后,通过图卷积神经网络对乘客关键点信息进行异常行为识别。在GTX1080GPU上的实验结果表明,文中提出的识别算法的处理速度能达到15 f/s,异常行为识别准确率达94.3%,能够实时准确地识别手扶电梯上乘客的异常行为。
- 单位