摘要

目的 在质检过程中精确快速地检测到药用空心胶囊的表面缺陷。方法 基于YOLOv5算法,针对模型网络参数量大和对长距离依赖关系的学习能力较弱的问题,提出在主干网络部分引入GhostNet模块和坐标注意力机制,使网络有效捕捉数据位置信息和通道信息的关系。结果 实验结果表明,改进的网络结构能够在参数量下降为原来的57%的前提下,对药用胶囊表面的破损、印刷错误、孔洞、划痕、凹陷等5类缺陷的平均检测精度达到96.9%,相较于YOLOv5s提高了2.4个百分点,检测速度提升了12帧/s。结论 文中方法能够有效对药用胶囊表面缺陷进行分类和定位,提高缺陷检测的准确率。