摘要
在股价预测领域,预测的准确率比估计的相合性更有价值,因此保证相合估计的传统线性模型正逐渐被长短期记忆神经网络(long short-term memory,简称LSTM)等深度学习方法替代.然而,影响股价的因素是多源的,不仅包括股市历史交易信息,还包括企业基本面信息和宏观经济信息等,这些不同来源的信息间有长期确定关系,而关于此关系的数据记忆会被传统LSTM模型在学习过程中抛弃.构建"集成式长短期记忆神经网络模型"即ensemble LSTM,应用动态网络生成机制保证不同来源数据间的长期均衡关系不会被遗忘,且采用多个LSTM并联,让各神经网络独立处理单来源数据,再通过稠密层融合,因此该模型具有节约运算资源的能力.随机选取了16支个股,对比LSTM和ensemble LSTM在预测股价涨跌方面的性能,发现后者在节约运算资源上具有优势,且准确率也大多高于前者.
- 单位