摘要

海表温度(sea surface temperature,SST)是研究全球气候变化的重要地球物理参数,SST的精确预测对全球气候变化、海洋环境和渔业发展具有重要意义。为了提高SST的预测精度,基于时空特征的提取方法,本文提出具有注意力机制的HDC-BiGRU混合模型(HDC-BiGRU-AT,由编码器和解码器构成),可以预测7天的SST。在模型编码阶段,混合空洞卷积(hybrid dilated convolution,HDC)能够提取SST的空间特征,双向门控循环神经网络(bidirectional gated recurrentunit,BiGRU)能够捕获SST的时序特征。通过加入注意力机制,对输出信息分配不同的权重(重要信息分配更高的权重系数),进而实现信息编码,在解码阶段可以提高模型的预测精度。选取我国东海和南海海域的二维SST数据进行建模,实验结果表明,HDC-BiGRU-AT模型的误差指标值均低于已有的方法,充分验证了所提方法的可行性、有效性。

全文