摘要
稀疏表示是以块为单位进行编码的,因此破坏了图像块间的相关性。针对上述问题,提出了基于卷积稀疏表示的红外与可见光图像融合算法。该算法采用交替方向乘子算法(ADMM)求解非下采样轮廓波变换(NSCT)域强边缘子带的卷积稀疏系数,完成特征响应系数的融合。同时,采用脉冲耦合神经网络(PCNN)模型的点火图完成NSCT域高频子带的融合。实验结果表明:该算法解决了稀疏表示的"块效应"问题,同时又兼具PCNN模型的视觉特性,可以有效地捕捉源图像的特征信息。另外,在主观视觉评价和客观质量评价方面均优于现有算法。
-
单位昆明理工大学; 昆明北方红外技术股份有限公司; 自动化学院