摘要
针对无人车传统RRT路径规划算法节点搜索盲目性、随机性以及路径曲折不连续等问题,提出一种动态变采样区域RRT路径规划算法(dynamic variable sampling area RRT, DVSA-RRT).首先,初始化地图信息,根据动态变采样区域公式划分采样空间,进而选择采样区域;在此基础上,利用基于安全距离的碰撞检测、概率目标偏置策略和多级步长扩展完成初始路径规划;最后,利用考虑最大转角约束的逆向寻优和3次B样条曲线对初始路径进行拟合优化.仿真结果表明,该算法相较于原始RRT算法在不同地图环境下的搜索时间和采样次数均降低50%以上,大大降低了节点搜索的盲目性和随机性,相较于其他算法搜索时间也减少30%以上,且优化后的路径平滑满足车辆运动动力学约束.
-
单位哈尔滨理工大学; 自动化学院