摘要

对于一般凸问题,对偶平均方法的收敛性分析需要在对偶空间进行转换,难以得到个体收敛性结果.对此,文中首先给出对偶平均方法的简单收敛性分析,证明对偶平均方法具有与梯度下降法相同的最优个体收敛速率■.不同于梯度下降法,讨论2种典型的步长策略,验证对偶平均方法在个体收敛分析中具有步长策略灵活的特性.进一步,将个体收敛结果推广至随机形式,确保对偶平均方法可有效处理大规模机器学习问题.最后,在L1范数约束的hinge损失问题上验证理论分析的正确性.