摘要

利用从飞机快速存储记录器(quick access recorder, QAR)中获取的大量数据设计研究了一种利用循环神经网络(recurrent neural network, RNN)及其改进网络门控循环单元(gate recurrent unit, GRU)进行飞机燃油流量预测的模型。首先使用基于时间的反向传播算法(back propagation trough time, BPTT)训练网络,Adam优化算法加速迭代更新神经网络权重。在参数调整实验中发现循环神经网络对历史信息利用能力不足,极易发生梯度消失与梯度爆炸,遂提出改进网络结构,引入GRU重构燃油流量预测模型。在最优的超参数条件下,重构模型在训练集和测试集上的损失函数均方误差(mean squared error, MSE)值分别为0.001 08、0.000 97。通过与朴素RNN的预测曲线和MSE对比可以发现,改进后的GRU网络能够"记忆"更多历史信息而不易出现梯度消失或梯度爆炸的问题,预测精度与曲线拟合能力显著提高。因此,GRU重构模型显著改善了预测能力,并通过实际案例验证该预测模型在故障诊断等领域的应用。