摘要
针对传统文本分类方法中需要手动提取特征和分类进而导致分类准确率不高的问题,提出一种结合图卷积神经网络和注意力机制的文本分类方法。方法首先建立整个语料库的大型文本图,然后将文本图的邻接矩阵和特征矩阵输入到图卷积神经网络中,最后网络输出与注意力机制相结合,利用注意力机制中Self-Attention机制的Query矩阵,Key矩阵和Value矩阵计算Attention值,充分学习文本表示,不断调整网络的输出,最终提高文本分类的准确率。在数据集上的仿真结果表明,所提出的方法与传统文本分类方法相比,其准确率较高。
- 单位