摘要

电动螺旋桨无人机应用越来越普及,但普遍续航时间较短,提高电动力系统效率、降低功率消耗是提高航时的主要措施。电机-变距螺旋桨动力系统(以下简称变距电动力系统)可同时改变转速、桨距两个量,存在桨距和转速的最佳组合,使系统功率最小。相比电机-定距螺旋桨动力系统,其在耗能方面具有特殊优势,但如何达到最小功率点,目前研究较少。针对上述问题,为提高计算效率,便于控制研究工作的开展,首先基于改进天牛须算法的BP神经网络训练得到变距电动力系统的神经网络代理模型。接着提出了一种变距电动力系统功率优化控制策略:在一定入流速度、拉力需求下,基于自适应扩展卡尔曼滤波-牛顿法实时优化桨距,并在一定桨距下利用模糊PID控制系统转速以达目标拉力,实现目标拉力需求下的最小功率控制。仿真验证结果表明,提出的功率优化控制策略鲁棒性更强、优化速度更快、收敛效果更好。