摘要

为提高模拟电路的软故障诊断能力,提出一种基于深度卷积神经网络(DCNN)特征提取的极限学习机(ELM)诊断方法。先利用DCNN在特征提取方面的优势,从含有电路故障信息的信号中自主提取有辨识力的特征;利用ELM出色的分类性能,构建获取特征的故障诊断模型;通过Sallen-Key带通滤波器电路的故障诊断实验对提出方法进行了验证。仿真结果表明,提出的基于DCNN的故障特征提取方法优于传统KPCA与KSLPP方法,与ELM分类器集成后得到的诊断准确率达到98.2%,有助于改善模拟电路的故障诊断精度,从而验证了其可行性和有效性。