摘要

针对输电线路机巡影像缺陷识别中低漏报率的需求,提出了一种基于组合式深度目标检测框架的输电线路低漏报率缺陷识别方法。该方法首先利用典型目标检测算法在输电线路巡检图像数据集上进行训练,得到输电线路设备缺陷的特征提取网络;随后引入位置随机分布函数改进目标预测的方式,并利用自适应非极大值抑制判别器,对2个网络的特征提取结果进行自适应融合,最终得到巡检图片中缺陷的类型和位置。测试结果表明,该方法能够有效降低巡检图像缺陷识别的漏报率,采用该方法得到的主要缺陷的平均漏报率远低于其他深度学习模型,可同时实现多类缺陷的检测,能有效促进输电线路常规巡检中缺陷自动识别的应用和推广。