摘要

针对微生物发酵建模参数辨识过程中稳定性差、易陷入局部最优和模型预测精度低的问题,提出一种基于鸟群算法的发酵过程参数寻优算法—改进鸟群算法。通过采用非线性函数对原鸟群算法中的学习系数进行调整,并且当鸟类保持警戒行为并试图移动到种群中心时用莱维飞行公式替换鸟类位置更新公式,以及在寻优过程中当算法最优解保持不变时对最优解加入混沌扰动并用模拟退火算法再次寻优的三种方式对鸟群算法进行改进。仿真结果表明,改进鸟群算法在收敛速度、寻优精度和稳定性等方面的性能优于鸟群算法、遗传算法、粒子群算法等群智能算法。改进鸟群算法克服了原算法的不足之处,总体性能得到提高。