摘要
人工智能(AI, artificial intelligence)与通信技术的深度融合是6G网络的典型特征。一方面,AI为6G网络发展注入了新动力,能够有效利用网络运行产生的历史数据,使网络具备自维护、自优化的功能,加速了网络智能化进程。另一方面,6G网络丰富的场景和大规模的物联设备入网应用为AI提供了广阔的应用渠道和海量的训练数据,使AI能够更好地训练和部署,充分发挥AI的内在优势,为用户提供更加优质的智能服务。尽管如此,在一些实际应用中,受复杂环境的影响,存在数据样本收集困难、收集成本高和样本普适性不足等问题,难以充分发挥AI的性能优势。为此,学术界和工业界将生成对抗网络(GAN, generative adversarial network)引入到无线网络的设计中,利用GAN强大的特征学习和特征表达能力产生大量模拟实际的生成样本,实现无线数据库的扩充,从而有效提升面向无线网络的AI模型的泛化能力。由于其优秀的性能表现,以GAN为代表的生成式模型在无线网络领域受到越来越多的关注,并迅速发展成为6G网络新的研究热点。首先,综述了GAN的原理及其改进衍生模型,对各种衍生模型的框架及优缺点进行了分析归纳;然后,综述了这些模型在无线网络领域的研究及应用现状;最后,面向6G网络的需求展望了GAN在6G网络中的研究趋势,为未来的研究提供了一些有价值的探索。
- 单位