摘要
传统的BP神经网络拥有良好的逼近非线性映射能力,然而由于其自身存在收敛速度慢,容易陷入局部极小值和泛化能力差的不足,往往难以满足实际中预测精度的需要。采用卡尔曼滤波方法,将观测到的大坝位移原始值进行滤波处理,以尽可能剔除随机误差的干扰,并引入遗传算法,对神经网络的权、阈值进行优化,提高其全局搜索能力,建立了基于卡尔曼滤波的GA-BP模型。以某大坝位移预测为例,证明了此模型比传统的BP模型在预测精度上有所提高,具有一定的实际应用价值。
-
单位河海大学; 水文水资源与水利工程科学国家重点实验室