摘要

菌种和数量是研究菌群失调和疾病预测的重要参数,然而细菌分类和计数工作主要由人工完成,过程繁琐,极易出错,并且耗时费力。本研究提出一种基于图像深度学习的方法对显微图像中的革兰氏阳性杆菌、革兰氏阴性杆菌、革兰氏阳性球菌和革兰氏阴性球菌进行分类。整个算法过程包括分割和分类识别两部分,首先采用U-Net"渐进分割法"对细菌部分和背景部分进行分割;然后将分割后的细菌分别投入ResNet50模型和VGG19模型进行识别和计数。将经过再训练ResNet50模型和VGG19模型的计数结果与人工分类计数标准的结果进行比较,实验结果表明ResNet50模型可以达到人工分类和计数的准确率。