摘要
随着数据规模的不断增长,大数据管理具有重要意义.在众多数学模型中,因为概率模型可以将海量数据抽象成少量概率数据,所以它非常适合管理大数据.因此,研究大数据环境下的概率数据管理具有重要意义.作为一种经典查询,基于概率数据的范围查询已被深入研究.然而,当前研究成果不适合在大数据环境下使用.其根本原因是这些索引的更新代价较大.该文提出了索引HGD-Tree解决这一问题.首先,该文提出了一系列算法降低新增数据的处理代价.它可以保证树结构平衡的前提下快速地执行插入、删除、更新等操作.其次,该文提出了一种基于划分的方法构建概率对象的概要信息.它可以根据概率密度函数的特点自适应地执行划分.此外,由于作者提出...
- 单位