摘要

针对无人机输电线路巡检图像中螺栓缺销检测精度较低、漏检较多的问题,提出一种基于改进YOLOv5s的输电线路螺栓缺销检测方法。在Backbone部分嵌入Coordinate Attention注意力模块;在Neck部分原有的“FPN+PAN”结构的基础上,新增一条“自顶向下”的特征信息传递路径,跨越临近的同尺度特征层,与较浅层网络以加权融合的方式进行特征融合;将Head部分设置为解耦检测头,将对螺栓检测的分类任务与定位任务分开进行。改进后的YOLOv5s算法增强了对螺栓特征信息的学习能力。使用本方法在螺栓缺销数据集上实验,精确率提升了2.3%,召回率提升了3.4%,平均精度提升了3.1%,检测速度达到了41.1帧/秒,表明改进后的方法能提升输电线路螺栓缺销的检测能力,在智能巡检中具有一定的应用价值。