摘要
针对人工和传统自动化检测偏光片表面缺陷的准确性和效率问题,解决传统机器视觉在人工设计特征和泛化能力差的问题,提出了一种基于改进Faster-RCNN的偏光片表面缺陷检测方法。通过对比四种特征提取网络最终选择ResNet-101并引入特征金字塔网络(FPN)来提高对小缺陷的检测能力;接着采用ROI Align取代原始的ROI Pooling以解决两次取整操作引起的像素误差;最后通过采集方案获取偏光片表面图像,建立三种缺陷类型的数据集,结合k-means++聚类算法来改进anchor生成方案。实验表明,改进后的网络在偏光片缺陷数据集的mAP达到93.5%,平均检测单张待测图像耗时0.142s,能够满足实际检测的需求。
- 单位