摘要
鉴于传统维数约减方法对高光谱遥感影像进行降维时,往往只利用了单一的光谱特征,限制了分类性能的提升。提出一种基于多特征流形鉴别嵌入的维数约减方法,该方法首先提取高光谱数据的LBP(Local Binary Patterns)纹理特征,然后利用样本点的光谱-LBP特征联合距离及类别信息构建类内图和类间图以发现高光谱影像中的鉴别流形结构,在低维嵌入空间中不仅保持来自同一像素的光谱和纹理特征的相似性,而且使同类点尽可能紧致、不同类点远离,实现空-谱联合低维鉴别特征提取,以有效提高地物分类性能。在Indian Pines和黑河高光谱遥感数据集上的实验表明,本文算法的分类精度在不同实验条件下均优于传统的维数约减方法,其分类精度可达95.05%和96.20%,在较少训练样本条件下优势更为明显,有利于实际应用。
- 单位