摘要

基于运动想象的脑机接口技术有助于手部运动障碍的患者康复,因而广泛被用于康复医疗领域。针对目前运动想象脑电信号信噪比低,导致运动想象左右手脑电信号(Motor Imagination-Electroencephalogram,MI-EEG)分类效果不佳的问题,本文鉴于注意力模块能够关注与运动想象分类任务相关的重要特征和忽视不重要特征的特性,提出一种基于高效通道注意力(Efficient Channel Attention,ECA)模块的卷积神经网络对左右手MI-EEG进行特征提取和分类。为便于卷积神经网络(Convolutional Neural Network,CNN)对脑电信号进行识别,本文使用小波变换将脑电时序信号转换为二维时频图;然后调整基于ECA模块的CNN结构和参数;最后,对本文方法在脑电信号数据集上进行实验。实验结果表明,与一些基于深度学习的运动想象分类识别方法相比,基于ECA模块的CNN能够有效提升MI-EEG的识别准确率,说明本文方法在运动想象脑电识别方面具有有效性。